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A problem of impressing coaxial stamps of circular cross section into the upper 
and lower surface of a homogeneous elastic layer is studied. The bases of the 
stamps have axial symmetry. The parts of the layer surfaces lying oustide the 

contact zone are stress-free, there is no friction or coupling between the layer 
and the stamps. A system of two integral equations with two unknown funct- 

ions is obtained, and provides a solution of the problem. The method of 
separating the singularities provides the way of reducing this system to the 
Fredholm equations of second kind. An approximate solution of the equations 
is obtained for the case of flat stamps under the assumptions that the two para- 
meters entering the system are sufficiently small. 

Problems of a layer with various boundary conditions were formulated and 
solved in many papers and books, e. g. [l, 21. However, to the best of the 
author’s knowledge, in all these problems the conditions at the boundary were 
assumed different only on one side of the layer; in the present problem the 
boundary conditions are mixed at both sides of the layer, and this results in a 
system of two integral equations. 

1. Let h and p be the Lam5 constants of the elastic layer 

where u, and 8, are the deformation components and U,., U, and dr, the 
stress components in the cylindrical coordinate system (see Fig. 1). The boundary 
conditions are 

(1.1) 

Here g+ (F) and g_ (F) are functions defining the bases of the stamps in terms of 
their radii F+ and r_ , and h+ , h_ are constant, SO far ,unspecified, determining 

the depth of penetration of the stamps into the layer. 
In the case of axial symmetry the stress ‘and deformation components can be ex- 

pressed in terms of a single biharmonic function, We choose this function in the form 

of a Hankel transform 

@(f, 2) = TG(T, Z)~o(Y’)YdY 

G (y, z) =‘(A + Bz) ch (“I’, z) + (C + Dz) sh (yz) 

(1.2) 
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where A = A (y)? . . *, D = L) (T) are functions which should be found from 
the boundary conditions (1.1). 

Substi~~g (1.2) into the known expressions for uZ, UZ and Z,, we obtain, with 

help of dp, 

* PC 
u, = 

s i- a9 - ‘FyzG) $0 (yr) dy (1.3) 
0 

~,=Qj~+2~)~-(3~+41~)-&jyJ.(ywy 
0 

OD 

%-, = Sk 
h g + (h + 2~) yaG] yaJl (yr) dy 

0 

Let us introduce the following notation: 

- o&=*d = P*(r), P*(Y) = TP (r)rJo(Wdr 
i * 

(1.4) 

Applying the Hankel transform inversion formula to the second equation of (1.3) and 

..I,,Ti 

putting, consecutively, z = d and z = --d, we obtain 
+ two equations for the unknown A, B, c and D . Another 

two equations yield the boundary conditions x&=+d = 0. 

-- 

u Thus we can write the unknown d, . . ., D in terms of 
the new unknowns & (y), and the function G (y, z) 
assumes the form 

Z=U 

G (y, 2) = g+ (Y, z)P+ (Y) + g_ (Y, z)F- (Y) 

-d 

E 
Substituting now the above expression into the first equation 
of (1.3) and assuming, one after the other, z = d and 

Ir== --d 3 we arrive at a system of two equations with 

zr- 
the unsown j?* (7). Omitting the cumbersome, though 
elementary, manipulations, we arrive at the following re- 

Fig. I suits: 

la = yd, 3h + 2P E=p h+p , CT= ii 
2 @ + cl) 

The functions & (y) behave differently as y + -i- 00 . If K_ (y) tends to 
zero as the infinitesimal 4yd exp (-2~4, then K, (y) = 1 -I- 0 ((4yd exp 
(--2@))3. The latter causes the appearance of s~~la~ti~ in the left hand sides of 
the system (1.5). 
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Let us set K, (y) = 1 -I- a+ (y), K_ (y) = R_ (y) and separate these singul- 
arities in the explicit form 

+5~*(Y)yJ,(yF)dy+~*(r)=z(1e~qf+‘(F) 
(1.3) 

0 

Ik w = J [% (79 P+(Y) - RT W Is, (Y)J YJI (v-) dy 
0 

To satisfy the conditions for U, in (1.11, we set 

- pk (r) = 5 YJo (Yr> dY J cpk (t) cos (yt) dt 
0 0 

(1.7) 

Here cpk (t) are new unknown functions, and henceforth we assume them to be 
continuously differentiable. 

Integrating (1.7) by parts and remembering that [3] 

we obtain 

r sin (yt) Jo (yr) dy = ( (t2 - F2)+’ r < t 
0 0, r>t 

‘p* (rf) (rg - r2)+ - 4 O( ‘pk t t2 - r2)+dt, r < rf (I- 8, 
r 

- P* 0.1 = 

P* G-1 = 0, r > r* 

F&placing now the functions pk (r) in the equation for ir, (y) in (1.4) by their 
expressions given in (1.7) and remembering that 

00 

5 Jo(yr)vdy~Jo(yp)pf(p)dp=f(r) (O<r<cQ) 
0 0 

we obtain 

rrt 

’ P*(Y) = - I 
0 

q*(t) cos (vt) at = - cp* (T&f;) q&i _t 

If 

s 

F ‘p* (t) at 

0 

The integrand function R& (y) in(l,. 5)has third order poles atthepoint y = 0, YJi 
(yr) is of second order of smallness in y, and the functions jj* (y) at this point 

are different from zero (P is the pressure exerted by the stamps on the layer) 

% 
P.1,(Of= cF*(f)dr=&#O 

s 
0 
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diverge, when taken separately. But if we set 

and take into account the fact that the difference Ei (r) I= R+ (7) - fi- (Y) is 
bounded at the point y - 0 , then we notice that the singularities cancel each other 
and we obtain 

I* =2n, ’ ~R(y)yJ~(yr)dy-~IR,(y)~,(y)- 
0 0 

R.(Y) a_ (r>l YJI W> d-t 

Having performed these manipulations, we change the order of integration in the in- 
tegrals of (1.6) to obtain 

r tq*’ (t) rlt s - =2(1: ,,)f;(r)--~R(Y)Y~l(Yl)dY~ 
r y-/r% - t” 

(1.9) 
0 0 

which were derived with help of the relations [3] 

[sin(yt)J,(yr)dy = (’ [ry~l-” 
0 

F<: 

2. The operators in the left hand side of the system (1.9) have known inverses. 
If we assume for the time being that the right hand sides of (1.9) are known and put 

t = r sin 8, we obtain the Schlijmilch equation 
nla 

5 P(rsin0)& = g(r) 

0 



Contact problem fa a layer 1173 

the continuous solution of which is 

n/a 
F(r)==+- [g(O)+r S g’(rsiW~~] 

0 

(2.1) 

In fact, the right hand sides of (1.9) are not known, therefore (2.1) generates new 
integral equations of second kind. These equations are 

cp*‘(r) = F*(r) -&pwY sin(yr)dy~Ctrp+‘(f)~*(t, r)dtt (2.2) 
; i 

t- 

\ ’ cp_’ V) S_ (4 r) dt t A+& (r+, r> T A_+ (r-, r>, A* = qf (r*) 
tl 

S* (t, r) = 47 R* (y) ($ - sin (rt)) sin (yt) dy 
6 

nia 

F*(r) = ;(I? 02) \ 
[r sin Of* (r sin Cl)]’ de = 2 (t 5 cs) \ 

r if-+’ (4 4’ & 

;, 
i va 

It can be shown that the kernels Sk (t, r) are continuous in the square [O, r+] X 
IO, r-1 , therefore the system is Fredholmian. 

In what follows, it is expedient to introduce the quantities IQ = r* / d, u = ~(3, 
x = r/d andput 

‘p*’ (4 = -&j&*(x) 

It can be seen that in the limit as d --t 00 (the case of a half-space), the equat- 

ions (2.2) become 

cp*’ (r) = F* (4 

and we obtain the following solution of the problem for a half-space (see ( 1.8)): 

In particular, for a flat stamp we have 
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therefore 

Hence we set 

limA*=-& 
d-co f 

A*=&& f 
In the new notation the system (2.2) becomes (restricting ourselves to the case of flat 

stamps): 

I#&)= [ R’(.).sin(u~)di~fT$i(1)Ti(~, ~)dt& (2.3) 
0” 0 

e- 

\ 
’ $_(t)Tr(t, ++T&+, &fT&_, 2) 

0 

R”(u)_ 2u+1-e-2” 
- 

sh2u+2u 

T* (t, Z) = + r U* (2~) (ut - sin (ut)) sin (Uz> du 
0 

u, (2) = y;; ,z,,+_z”,,+ z 

‘- (‘) = 
zchzfshz 
(ah z)2 _ $ 

3. The system (2.3) can be solved using various approximate methods. We shall 
use the simplest method of small parameter. Expanding sin (uz) into a power series, 

we obtain 

T* U* 4 = e* U) 3 + b* (t) ts + .., (3.1) 

Taking into account the fact that 

U+ (2) m 4~%+, U_ (2) - 2zhz, z - + 00 

we can show that the series (3.1) converge when s, G max (e-, e+) < 2 , and the 
smaller value of e. the better convergence. For an iterative process to converge, 
it is sufficient that 

(11 T* I] = m;x I T* (5, t) I, A = [O Q z < eel X [O < f < eel) 

Separating the interval [O, (xl) into two subintervals IO, al and (a, @J) and 
approximating the functions U+ (z) in a suitable manner on each of these subintervals, 
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we can show that a < 0.88 e.$. Therefore the iterative proc~ will certainly con- 

verge if e. < 1. 
Under these conditions the solution of (2.3) can be written in the form of series 

in powers of e, and a_ . To obtain approximate solutions with terms not great- 

er than e$, we must compute the integrals 

12) E 1 RfO (u) u2jdu (i=1,2) (3.2) 
0 

This was done by means of a computer, with the function Ri (u) approximated each 
time so that the error in computing the integrals (3.2) did not exceed 0.001. This 

gave the following approximation formulas for the normal stresses at the zone of con- 
tact: 

P 
0, [*=*a = 2 xr* J/- r*s - rs 

(1 + 0.0866~3 - 0.1732~# + 0.0323s+..) 
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